Evidence-Based Informatics William Hersh Professor and Chair Department of Medical Informatics & Clinical Epidemiology Oregon Health & Science University Portland, OR, USA Email: hersh@ohsu.edu Web: www.billhersh.info Blog: http://informaticsprofessor.blogspot.com Twitter: awilliamhersh OHSII 1 #### Goal and activities for session - Answer the question, how do we adapt evidencebased medicine (EBM) techniques to practice evidence-based clinical informatics? - Activities - 9:00 Fellow-led review of EBM - 9:15 Discussion of adapting EBM process to evidence-based informatics - 9:30 Small-group of asking and answering question requiring finding and applying evidence - 10:00 Presentations back to group 2 ## What are the major steps in EBM? • (Answers from fellows) 3 # What are the major steps in EBM? - Phrasing a clinical question that is pertinent and answerable - Background vs. foreground - Question category - Identifying evidence to address the question - Best evidence for question category - Critically appraising the evidence - Determining if the evidence applies to the patient 4 # How do we adapt steps of EBM to evidence-based informatics? • (Answers from fellows) 5 # How do we adapt steps of EBM to evidence-based informatics? - Phrasing a clinical question that is pertinent and answerable - Identifying evidence to address the question - · Critically appraising the evidence - · Determining if the evidence applies to the patient - Consider: Wyatt, JC (2016). Evidence-based health informatics and the scientific development of the field. Studies in Health Technology and Informatics. 222: 14-24. 6 ### Phrasing the question (Wyatt, 2016) | Level | Type of evidence to support "What works?" questions | |-------|--| | 1a | Systematic reviews of well-designed impact studies designed to directly test a relevant design | | | principle, with low heterogeneity | | 1b | Systematic reviews indirectly comparing well-designed impact studies that evaluate systems that | | | demonstrate or lack a relevant design principle, with low heterogeneity | | 2 | An individual randomised controlled study comparing the impact on real decisions or actions of | | | a system designed according to a design principle or theory vs. a system not designed according | | | to that principle | | 3a | Study comparing the safety or accuracy of a system based on the design principle against one not | | | based on that principle, using real patient data | | 3b | Laboratory studies of simulated decisions or actions in response to a system based on the design | | | principle vs. one not based on the principle, using real or simulated patient data | | 4 | Untested theories or expert advice about what works in system design | | | Anecdotes and case studies ("It worked for me") | | Study type | | Motive for carrying out study | Typical questions | | | |------------|-----------------------------------|---|--|--|--| | 1. | Formative evaluation | How to improve an information system? | Is it accurate? Is it safe? Will people use it? How to improve it? | | | | 2. | Summative evaluation | Can the finished system solve a specific problem? | Does this system work?
How much does it cost?
Will people use it? | | | | 3. | Defensive
evaluation | Was the funders' money spent
well without making the
situation worse? | Has anything improved since the system was implemented? | | | | 4. | Self-
interested
evaluation | Can this study help the evaluator build their own CV? | Will this study have an impact on my colleagues? | | | | 5. | Principle-
based
evaluation | Can this generic principle contribute to system design and EBHI? | Does this general design principle make systems
more usable, effective, safer, less expensive, or
more maintainable? | | | ### Applying the evidence (Wyatt, 2016) | Question | Type of study | Results | Source | Evidence grade
(see Table 2) &
comments | |--|---|---|-------------------------------|---| | How to improve data quality? | Systematic review of
12 (mostly before-
after) studies of
various strategies in
UK primary care | Most strategies
appeared to have a
positive effect, but
study quality poor | Brouwer
et.al.
2006 [2] | Evidence grade
1a.
But systematic
review was
limited by poor
study designs. | | Does the use of
psychological
theory make a
difference in
behaviour change
websites? | Systematic review
and meta regression
of 85 RCTs of theory
based websites for
health behaviour
change | Use of theory to
design website or
recruit participants
improved
effectiveness by about
one third of a standard
deviation | Webb
et.al.
2010 [10] | Evidence grade
1b. Use of theory
may be
confounded with
better quality
website design. | | How much of a
difference does
tailoring and
targeting make to
text message
impact? | Systematic review
and meta regression
of 19 RCTs of
tailored SMS
interventions for
health behaviour
change | Use of tailoring and
targeting improves
intervention
effectiveness by 0.44
of a standard
deviation | Head
et.al.
2013 [11] | Evidence grade
1b. Use of
tailoring may be
confounded with
better quality text
design. | | How to improve diagnostic accuracy? | RCT of a checklist | A well designed
disease specific
checklist improves
accuracy by 10% | Adams
et.al.
1986 [12] | Evidence grade 2.
May reflect
limited accuracy
of junior doctors. | | Can Fogg's
principles of
Persuasive
computing
improve websites
for health-related
decisions? | Online RCT of two
websites to
encourage 900
students to join NHS
organ donation
register | No – no difference
(38% in both groups) | Nind
et.al.
2009 [13] | Evidence grade 2.
May only
generalise to
significant
decisions such as
organ donation. | | Which kind of
user interface
speeds up data
entry? | Experiment with 15
clinicians each
entering 63 medical
findings from 3
simulated cases
using alternative
prototype pen based
user interfaces | Paged interface 5
seconds faster than
scrolling.
Complete list of codes
4 seconds faster than
patient-specific list.
Fixed position on
screen 2 seconds
faster than variable
position. | Poon
et.al.
1996 [14] | Evidence grade
3b. Limited to
pen-based
interfaces? | ## Group exercise at tables - Break into groups of 2 or more, one person with Internet access - Activities (modulo time constraints) - Ask an answerable question - Find some evidence - Appraise the evidence found - Does the evidence answer question and apply in your setting? - (For some) Type one slide and present to group