HITECH: Advancing the Adoption of Electronic Health Records in the United States

William Hersh, MD
Professor and Chair
Department of Medical Informatics & Clinical Epidemiology
Oregon Health & Science University
Portland, OR, USA
Email: hersh@ohsu.edu
Web: www.billhersh.info

 ${\bf Blog: informatics professor. blogs pot.com}$

References

- Angrisano, C., Farrell, D., et al. (2007). Accounting for the Cost of Health Care in the United States. Washington, DC, McKinsey & Company.
 - http://www.mckinsey.com/mgi/rp/healthcare/accounting cost healthcare.asp.
- Anonymous (2009). Medical Records and Health Information Technicians. Occupational Outlook Handbook, 2010-11 Edition. Washington, DC, Bureau of Labor Statistics. http://www.bls.gov/oco/ocoS103.htm.
- Anonymous (2010a). Health Information Technology: Initial Set of Standards, Implementation Specifications, and Certification Criteria for Electronic Health Record Technology; Final Rule. Services, D. o. H. H. Washington, DC, Federal Register. 75: 44590-44654. http://edocket.access.gpo.gov/2010/pdf/2010-17210.pdf.
- Anonymous (2010b). Medicare and Medicaid Programs; Electronic Health Record Incentive Program; Final Rule. Services, C. f. M. M. Washington, DC, Federal Register. 75: 44314-44485. http://edocket.access.gpo.gov/2010/pdf/2010-17207.pdf.
- Anonymous (2010c). The State of Health Care Quality: 2010. Washington, DC, National Committee for Quality Assurance. http://www.ncqa.org/tabid/836/Default.aspx.
- Bernstam, E., Hersh, W., et al. (2009). Synergies and distinctions between computational disciplines in biomedical research: perspective from the Clinical and Translational Science Award programs. *Academic Medicine*, 84: 964-970.
- Blumenthal, D. (2010). Launching HITECH. New England Journal of Medicine, 362: 382-385.
- Blumenthal, D. and Tavenner, M. (2010). The "meaningful use" regulation for electronic health records. New England Journal of Medicine, 363: 501-504.
- Buntin, M., Burke, M., et al. (2011). The benefits of health information technology: a review of the recent literature shows predominantly positive results. *Health Affairs*, 30: 464-471.
- Chaudhry, B., Wang, J., et al. (2006). Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. *Annals of Internal Medicine*, 144: 742-752.
- Detmer, D. and Bloomrosen, M. (2008). *eHealth Capacity Building*, in Anonymous, ed. *From Silos to Systems: An Overview of eHealth's Transformative Power*. New York, NY. Rockefeller Foundation. http://www.rockefellerfoundation.org/uploads/files/7e99cb0d-ea8f-4666-82d2-5ab193d3768d-silos-to.pdf.
- Detmer, D., Bloomrosen, M., et al. (2008). Integrated personal health records: transformative tools for consumer-centric care. *BMC Medical Informatics & Decision Making*, 8: 45. http://www.biomedcentral.com/1472-6947/8/45.

- Friedman, C. (2007). Building the Workforce: An Imperative for Public Health Informatics. Atlanta, GA, Public Health Information Network (PHIN) 2007 Keynote Address.
- Friedman, C. (2008). Building the Health Informatics Workforce. Sacramento, CA, University of California Davis Invited Presentation.
- Goldzweig, C., Towfigh, A., et al. (2009). Costs and benefits of health information technology: new trends from the literature. *Health Affairs*, 28: w282-w293.
- Hamburg, M. and Collins, F. (2010). The path to personalized medicine. *New England Journal of Medicine*, 363: 301-304.
- Haux, R. (2010). Medical informatics: past, present, future. *International Journal of Medical Informatics*, 79: 599-610.
- Hayes, G. and Barnett, D. (2008). *UK Health Computing: Recollections and Reflections*. Swindon, UK. British Computer Society.
- Hersh, W. (2004). Health care information technology: progress and barriers. *Journal of the American Medical Association*, 292: 2273-2274.
- Hersh, W. (2009). A stimulus to define informatics and health information technology. *BMC Medical Informatics & Decision Making*, 9: 24. http://www.biomedcentral.com/1472-6947/9/24/.
- Hersh, W. (2010). The health information technology workforce: estimations of demands and a framework for requirements. *Applied Clinical Informatics*, 1: 197-212.
- Hersh, W., Margolis, A., et al. (2010). Building a health informatics workforce in developing countries. *Health Affairs*, 29: 274-277.
- Hersh, W. and Wright, A. (2008). What workforce is needed to implement the health information technology agenda? An analysis from the HIMSS Analytics™ Database. *AMIA Annual Symposium Proceedings*, Washington, DC. American Medical Informatics Association. 303-307.
- Hsiao, C., Beatty, P., et al. (2010). Electronic Medical Record/Electronic Health Record Systems of Office-based Physicians: United States, 2009 and Preliminary 2010 State Estimates. Hyattsville, MD, National Center for Health Statistics.

 http://www.cdc.gov/nchs/data/hestat/emr_ehr_09/emr_ehr_09.htm.
- Jha, A., DesRoches, C., et al. (2010). A progress report on electronic health records in U.S. hospitals. *Health Affairs*, 29: 1951-1957.
- Kohn, L., Corrigan, J., et al., eds. (2000). *To Err Is Human: Building a Safer Health System*. Washington, DC. National Academies Press.
- Leviss, J., Gugerty, B., et al. (2010). *H.I.T. or Miss: Lessons Learned from Health Information Technology Implementations*. Chicago, IL. American Health Information Management Association.
- Leviss, J., Kremsdorf, R., et al. (2006). The CMIO a new leader for health systems. *journal of the American Medical Informatics Association*, 13: 573-578.
- Mantas, J., Ammenwerth, E., et al. (2010). Recommendations of the International Medical Informatics Association (IMIA) on education in biomedical and health informatics 1st revision. *Methods of Information in Medicine*, 49: 105-120.
- Maxson, E., Jain, S., et al. (2010). The regional extension center program: helping physicians meaningfully use health information technology. *Annals of Internal Medicine*, 153: 666-670.
- McGlynn, E., Asch, S., et al. (2003). The quality of health care delivered to adults in the United States. New England Journal of Medicine, 348: 2635-2645.
- McKethan, A., Brammer, C., et al. (2011). An early status report on the Beacon Communities' plans for transformation via health information technology. *Health Affairs*, 30: 782-788.
- Monegain, B. (2009). Health IT effort to create thousands of new jobs, says Blumenthal. Healthcare IT News. October 6, 2009. http://www.healthcareitnews.com/news/health-it-effort-create-thousands-new-jobs-says-blumenthal.

- Otero, P., Hersh, W., et al. (2010). A medical informatics distance-learning course for Latin America translation, implementation and evaluation. *Methods of Information in Medicine*, 49: 310-315.
- Protti, D. and Johansen, I. (2010). Widespread Adoption of Information Technology in Primary Care
 Physician Offices in Denmark: A Case Study. New York, NY, Commonwealth Fund.

 http://www.commonwealthfund.org/~/media/Files/Publications/Issue%20Brief/2010/Mar/137

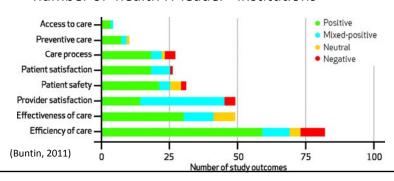
 9 Protti widespread adoption IT primary care Denmark intl ib.pdf.
- Quiros, F., Luna, D., et al. (2009). Experience in the Development of an In-house Health Information System and the Training Needs of the Human Resources at the Hospital Italiano de Buenos Aires, 147-152, in Geissbuhler, A. and Kulikowski, C., eds. IMIA Yearbook of Medical Informatics 2009. Stuttgart, Germany. Schattauer.
- Safran, C. and Detmer, D. (2005). Computerized physician order entry systems and medication errors. *Journal of the American Medical Association*, 294: 179.
- Schoen, C., Osborn, R., et al. (2009a). A survey of primary care physicians in eleven countries, 2009: perspectives on care, costs, and experiences. *Health Affairs*, 28: w1171-1183.
- Schoen, C., Osborn, R., et al. (2009b). In chronic condition: experiences of patients with complex health care needs, in eight countries, 2008. *Health Affairs*, 28: w1-w16. http://content.healthaffairs.org/cgi/content/full/28/1/w1.
- Shaffer, V. and Lovelock, J. (2010). Results of the Gartner-AMDIS Survey of Chief Medical Informatics Officers. Stamford, CT, Gartner.
- Smith, P., Araya-Guerra, R., et al. (2005). Missing clinical information during primary care visits. *Journal of the American Medical Association*, 293: 565-571.
- VanDenBos, J., Rustagi, K., et al. (2011). The \$17.1 billion problem: the annual cost Of measurable medical errors. *Health Affairs*, 30: 596-603.
- Vest, J. and Gamm, L. (2010). Health information exchange: persistent challenges and new strategies Journal of the American Medical Informatics Association, 17: 288-294.
- Zerhouni, E. (2007). Translational research: moving discovery to practice. *Clinical Pharmacology and Therapeutics*, 81: 126-128.

HITECH: Advancing the Adoption of Electronic Health Records in the United States

William Hersh, MD
Professor and Chair
Department of Medical Informatics & Clinical Epidemiology
Oregon Health & Science University
Portland, OR, USA
Email: hersh@ohsu.edu
Web: www.billhersh.info
Blog: informaticsprofessor.blogspot.com

Outline of talk

- Information-related problems and solutions in healthcare
- Why do we need more informatics?
- Why are we not there?
- Details of ARRA programs
- The workforce need for informatics
- Educational and career opportunities in informatics


Many problems in healthcare have information-related solutions

- Quality not as good as it could be (McGlynn, 2003; Schoen, 2009; NCQA, 2010)
- Safety errors cause morbidity and mortality; many preventable (Kohn, 2000; Van Den Bos, 2011)
- Cost rising costs not sustainable; US spends more but gets less (Angrisano, 2007)
- Inaccessible information missing information frequent in primary care (Smith, 2005)

3

Growing evidence shows information interventions are part of the solution

- Systematic reviews (Chaudhry, 2006; Goldzweig, 2009; Buntin, 2011) have identified benefits in a variety of areas
 - Although 18-25% of studies come from a small number of 'health IT leader" institutions

Biomedical and health informatics is the science underlying the solutions

- Biomedical and health informatics (BMHI) is the science of using data and information, often aided by technology, to improve individual health, health care, public health, and biomedical research (Hersh, 2009)
 - It is about information, not technology
- Practitioners are BMHI are usually called informaticians (sometimes informaticists)

OREGON OFFI HEALTH OFFI & SCIENCE UNIVERSITY

BMHI has many sub-areas **Imaging Informatics** Research Informatics {Clinical field} Consumer Health Informatics Informatics Medical or Clinical **Public Health** Bioinformatics Informatics Informatics (cellular and molecular) (person) (population) Biomedical and Health Informatics **Legal Informatics** Chemoinformatics Informatics = People + Information + Technology

Informatics BO (before Obama)

- Growing recognition of value in healthcare
 - Evidence for improved safety, quality, and cost of healthcare
 - Widespread usage worldwide (Schoen, 2009; Protti, 2010)
 - Research and demonstration funding by NLM, AHRQ, and others
 - Actions of Bush Administration e.g., appointment of first National Coordinator for HIT, establishment of AHIC, HITSP, etc.
- Emerging importance in other areas
 - Clinical and translational research prominent role in CTSA programs (Zerhouni, 2007; Bernstam, 2009)
 - Genomics bioinformatics, personalized medicine (Hamburg, 2010)
 - Individual health growth of personal health records (PHRs) (Detmer, 2008), including from companies, e.g., Microsoft HealthVault, Google Health, etc.

7

But then a new US president came along...

"To lower health care cost, cut medical errors, and improve care, we'll computerize the nation's health records in five years, saving billions of dollars in health care costs and countless lives."

First Weekly Address Saturday, January 24, 2009

OREGON HEALTH SCIENCE UNIVERSITY

&SCIENCE

...and the US entered a new "ARRA"

- Health Information Technology for Economic and Clinical Health (HITECH) Act of the American Recovery and Reinvestment Act (ARRA)
 - Incentives for electronic health record (EHR) adoption by physicians and hospitals (up to \$27B)
 - Direct grants administered by federal agencies (\$2B)
- Other provisions in other areas of ARRA, e.g.,
 - Comparative effectiveness research
 - NIH and other research funding
 - Broadband and other infrastructure funding

Why has it been so difficult to get there? (Hersh, 2004)

Health Care Information Technology

Progress and Barriers

William Hersh, MD

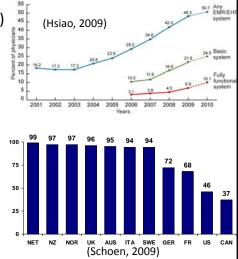
N THE 3 DECADES SPACE THE TERM "MEDICAL INFORMATION" was first used, individuals working at the intersection of information technology (IT) and medicine have developed and technology (IT) and medicine have developed and technology.

in this issue of JAMA. Slack demonstrates the value that patient physician e-mail can have in improving patient care, and alse catalogs the incomplete but encouraging underlying evidence. If As with many applications of IT, the rechnology car improve the existing situation but also empower clinician and patients to think more landamentally about how inno

- Cost
- Technical challenges
- Interoperability
- Privacy and confidentiality
- Workforce

care 11. ⁴⁰It is no exaggeration to declare that the years ahead portend the "decade of health information technology." ³⁰ Informatics is poised to have a major impact in patient-clinician communication. In the Clinical Crossroads article See also p 2255.

ment. The rest goes to those wine typicolly do not pay to Author Affiliation; Capatrierit of Medical Informatics & Clinical Epidemiolog, Cheepon Hasth & Science University, Perfand. Conseponding Author William Heavy, Mr.O. Department of Medical Informatic 6-Clinical Epidemiology, Organi-Hasth & Science University 5-book of Medical 1918 5th Van Losco Park Rd. (Exc., Perfand). Cell 297-21-3978 Benefabor. 1918 5th Van Losco Park Rd. (Exc., Perfand). Cell 297-21-3978 Benefabor.


(Reprinted) IAMA, November 10, 2004—Vid 242, No. 18 2278

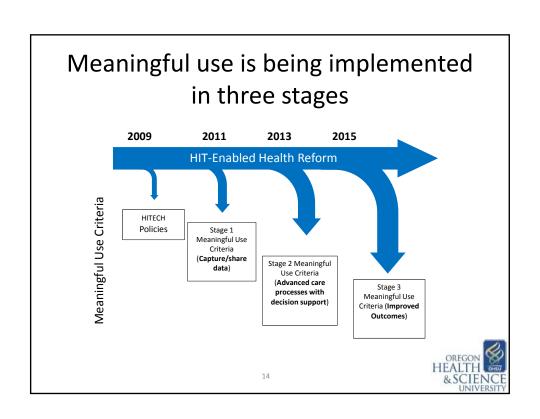
OREGON HEALTH OREU

WESCIENCE
UNIVERSITY

US has low rates of adoption in inpatient and outpatient settings

- Adoption in the US is low for both outpatient (Hsiao, 2010) and inpatient settings (Jha, 2010)
- By most measures, US is a laggard and could learn from other countries (Schoen, 2009)
- Most other developed countries have undertaken ambitious efforts, e.g.,
 - England (Hayes, 2008)
 - Denmark (Protti, 2010)

The new "ARRA" of health information technology (HIT) in the US


- HITECH provides financial incentives for "meaningful use" of HIT (Blumenthal, 2010; Blumenthal, 2010)
 - Incentives for EHR adoption by physicians and hospitals (up to \$27B)
 - Direct grants administered by federal agencies (\$2B)
 - All initiatives administered by the Office of the National Coordinator for Health IT (ONC, http://healthit.hhs.gov/)

OREGON OF STREET OF STREET

What is "meaningful use" of an EHR?

- Driven by five underlying goals for healthcare system
 - Improving quality, safety and efficiency
 - Engaging patients in their care
 - Increasing coordination of care
 - Improving the health status of the population
 - Ensuring privacy and security
- Consists of three requirements
 - Use of certified EHR technology in a meaningful manner
 - Utilize certified EHR technology connected for health information exchange (HIE)
 - Use of certified EHR technology to submit information on clinical quality measures

13

Implementation of meaningful use

- Implemented through Medicare or Medicaid reimbursement to
 - Eligible professionals (EPs) up to \$44K
 - Eligible hospitals (EHs) \$2-9M
- Differences in definitions of above as well as amounts for Medicare vs. Medicaid reimbursement
- Stage 1 elaborated in final rules released in July, 2010 by CMS (2010) and ONC (2010)
 - Must achieve 14-15 core and 5 of 10 menu criteria

15

Phase 1 meaningful use criteria

- Variety of criteria in areas of
 - Data collection e.g., problem list, demographics, etc.
 - Functions e.g., clinical decision support rule, computerized provider order entry (CPOE)
 - Health information exchange test of capability
 - Security various encryption and network standards
 - Quality reporting various measures for EPs based on specialty and for EHs

Other funding initiatives for the HIT infrastructure

- HIT Regional Extension Centers (RECs)
 - \$677 million to fund 62 RECs that will provide guidance, mainly to small primary care practices, in achieving meaningful use (Maxson, 2010)
- State-based health information exchange (HIE)
 - \$547 million in grants to states to develop HIE programs (Vest, 2010)
- Beacon communities
 - \$250 million to fund 17 communities that provide exemplary demonstration of the meaningful use of EHRs (McKethan, 2011)
- Strategic health information advanced research projects (SHARP)
 - \$60 million for four collaborative research centers

17

Other funding for the infrastructure: HIT workforce

- A competent workforce is essential to achieve meaningful use of HIT
- ONC estimates 51,000 workers needed to implement federal HIT agenda (Monegain, 2009)
- ONC is funding \$118 million for
 - Community college consortia (\$70M)
 - Curriculum Development Centers (\$10M)
 - Competency testing (\$6M)
 - University-based training grants (\$32M)

ONC workforce roles to implement the HITECH agenda

- Mobile Adoption Support Roles
 - Implementation support specialist*
 - Practice workflow and information management redesign specialist*
 - Clinician consultant*
 - Implementation manager*
- Permanent Staff of Health Care Delivery and Public Health Sites
 - Technical/software support staff*
 - Trainer*
 - Clinician/public health leader†
 - Health information management and exchange specialist†
 - Health information privacy and security specialist†
- Health Care and Public Health Informaticians
 - Research and development scientist†
 - Programmers and software engineer†
 - Health IT sub-specialist†

(to be trained in *community colleges and † universities)

ONC workforce development program

- Community College Consortia to Educate Health Information Technology Professionals Program (\$70M)
 - Five regional consortia of 82 community colleges developing short-term programs to train 10,000 individuals per year in the six community college workforce roles
- Curriculum Development Centers Program (\$10M)
 - Five universities collaboratively developing (with community college partners)
 HIT curricula for 20 components (topics)
 - One of the five (<u>OHSU</u>) additionally funded as National Training and Dissemination Center
- Competency Examination for Community College Programs (\$6M)
 - Developing competency examinations based on the six community college workforce roles
- Program of Assistance for University-Based Training (\$32M)
 - Funding education of individuals in workforce roles requiring university-level training at nine universities (including <u>OHSU</u>)
 - Emphasis on short-term certificate programs delivered via distance learning

Who are the HIT workforce and what do know about them? (Hersh, 2010)

- Three historical groups of professionals in HIT
 - Information technology (IT) usually with computer science or information systems background
 - Health information management (HIM) historical focus on medical records
 - Clinical informatics (CI) often from healthcare backgrounds
- Problematic HIT implementations often attributable to lack of understanding of clinical environment and use of IT within it (Leviss, 2010)

OREGON OSE
HEALTH OSE

& SCIENCE
UNIVERSITY

21

How many IT personnel does the US have and need?

- IT to reach level of known benefit and meaningful use, may need 40,000 (Hersh, 2008)
- HIM from US Bureau of Labor Statistics occupational employment projections 2008-2018 (BLS, 2009)
 - Medical Records and Health Information Technicians (RHITs and coders) – about 172,500 employed now, increasing to 207,600 by 2018 (20% growth)
- CI estimates less clear for this emerging field
 - One physician and nurse in each US hospital (~10,000) (Safran, 2005)
 - About 13,000 in health care (Friedman, 2008) and 1,000 in public health (Friedman, 2007)
 - Growing role of CMIO and other CI leaders (Leviss, 2006; Shaffer, 2010)

Informatics personnel needs and education are not limited to the US

- Many long-established programs in Europe, Asia, and Australia (Haux, 2010)
- Growing recognition of accomplishments in Argentina
 - Hospital Italiano (Quiros, 2009; Otero, 2010)
- Recognition of need to build capacity in developing countries as well (Detmer, 2008; Hersh, 2010)
- IMIA educational recommendations set baseline for world (Mantas, 2010)

23

Opportunities in BMHI are <u>not</u> limited to healthcare

- Bioinformatics genomics and personalized medicine
- Clinical and translational research building a "learning" healthcare system
- Public health protecting the public and promoting health, e.g., H1N1 surveillance
- Consumer health for all ages, especially aging Internet-savvy baby boomers
- Imaging informatics use of images for biomedical research, clinical care, etc.

24

Conclusions

- BMHI is an important science and profession for improving health, healthcare, public health, and biomedical research with data and information
 - Most resources in clinical informatics but plenty of other opportunity in bioinformatics, public health informatics, consumer health informatics, clinical research informatics, imaging informatics, etc.
- The grand experiment of HITECH is going on in the US – results not yet in
- There are many opportunities for practitioners, researchers, and others in BMHI

OREGON HEALTH SCIENCE UNIVERSITY

25

For more information

- Bill Hersh
 - http://www.billhersh.info
- Informatics Professor blog
 - http://informaticsprofessor.blogspot.com
- OHSU Department of Medical Informatics & Clinical Epidemiology (DMICE)
 - http://www.ohsu.edu/dmice
 - http://oninformatics.com
- OHSU financial aid for informatics training
 - http://www.informatics-scholarship.info
- What is BMHI?
 - http://www.billhersh.info/whatis
- Office of the National Coordinator for Health IT (ONC)
 - http://healthit.hhs.gov
- American Medical Informatics Association (AMIA)
 - http://www.amia.org

26